
Math 436 (Spring 2020) - Homework 5

1. Chapter 3: 25

Solution: First, we show that the diagonal map ∆: X → X ×X is continuous. Let
p1 and p2 be the projection of X ×X to the first and second copy of X respectively.
Clearly, p1 ◦ ∆ and p2 ◦ ∆ are continuous. It follows from Theorem 3.13 that ∆ is
continuous.

For the second part, we have

X is Hausdorff

⇐⇒ for any x 6= y ∈ X, there exist open neighborhoods Ux

of x and Uy of y in X such that Ux ∩ Uy = ∅.

⇐⇒

for any (x, y) /∈ ∆(X), there exists an open neighbor-
hood Ux × Uy of (x, y) in X ×X such that

(Ux × Uy) ∩∆(X) = ∅.

⇐⇒ ∆(X) is closed in X ×X.

2. Let X × Y be the product space of topological spaces X and Y . If A ⊆ X and B ⊆ Y ,
prove that

(a) A×B = A×B;

(b) (A×B)o = Å× B̊.

Solution:

(a) Since A×B is closed in X × Y and A×B ⊆ A×B, we have

A×B ⊆ A×B.

On the other hand, if x ∈ A and y ∈ B, then any open neighborhood U of x in
X intersects A nonempty, i.e., U ∩A 6= ∅ and any open neighborhood V of y in
Y intersects B nonempty, i.e., V ∩B 6= ∅. Note that any open neighborhood W
of (x, y) in X × Y contains an open neighborhood of (x, y) of the form U × V
where U is an open neighborhood of x in X and V is an open neighborhood of
y in Y . Hence W ∩ (A×B) 6= ∅. This shows that (x, y) ∈ A×B.

(b) Omitted.

3. If X and Y are discrete spaces, then the product space X × Y is discrete.

1



Solution: A discrete space is a topological space where every single point is open
subset. Let (x, y) be a point in X ×Y . {x} is open in X and {y} is open in Y , since
X and Y are discrete spaces. It follows that {(x, y)} = {x} × {y} is open in X × Y .
This shows that X × Y is discrete.

4. If X and Y are indiscrete spaces, then the product space X × Y is indiscrete.

Solution: The only open subsets of an indiscrete space are ∅ and the whole space.
It follows that the only open subsets of the product topology on X×Y are ∅×∅ = ∅,
∅ × Y = ∅, X × ∅ = ∅ and X × Y . This shows that X × Y is indiscrete.

5. Let (X, dX) and (Y, dY ) be two metric spaces. Consider the formula

D((x1, y1), (x2, y2)) :=
√
dX(x1, x2)2 + dY (y1, y2)2

for all (x1, y1) and (x2, y2) in X × Y . Prove that D defines a metric on the set X × Y .

Solution:

(1) Clearly, D((x1, y1), (x2, y2)) ≥ 0 and

D((x1, y1), (x2, y2)) = 0⇐⇒ (x1, y1) = (x2, y2).

(2) Also, it is obvious that

D((x1, y1), (x2, y2)) = D((x2, y2), (x1, y1)).

(3) Now we want to show that

D((x1, y1), (x3, y3)) ≤ D((x1, y1), (x2, y2)) +D((x2, y2), (x3, y3)).

Since dX and dY are metrics on X and Y respectively, we have

dX(x1, x3) ≤ dX(x1, x2) + dX(x2, x3)

and
dY (y1, y3) ≤ dY (y1, y2) + dY (y2, y3).

By squaring both sides, we have

dX(x1, x3)
2 ≤ dX(x1, x2)

2 + 2dX(x1, x2)dX(x2, x3) + dX(x2, x3)
2

dY (y1, y3)
2 ≤ dY (y1, y2)

2 + 2dY (y1, y2)dY (y2, y3) + dY (y2, y3)
2.
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It follows that

D((x1, y1), (x3, y3))
2

= dX(x1, x3)
2 + dY (y1, y3)

2

≤ dX(x1, x2)
2 + 2dX(x1, x2)dX(x2, x3) + dX(x2, x3)

2

+ dY (y1, y2)
2 + 2dY (y1, y2)dY (y2, y3) + dY (y2, y3)

2

≤ dX(x1, x2)
2 + dY (y1, y2)

2

+ 2 ·
√
dX(x1, x2)2 + dY (y1, y2)2 ·

√
dX(x2, x3)2 + dY (y2, y3)2

+ dX(x2, x3)
2 + dY (y2, y3)

2

=
(
D((x1, y1), (x2, y2)) +D((x2, y2), (x3, y3))

)2
where we have used Cauchy-Schwartz inequality

dX(x1, x2)dX(x2, x3) + dY (y1, y2)dY (y2, y3)

≤
√
dX(x1, x2)2 + dY (y1, y2)2

√
dX(x2, x3)2 + dY (y2, y3)2.

Recall that for vectors v = (dX(x1, x2), dY (y1, y2)) and w = (dY (y1, y2), dY (y2, y3))
in R2, we have

v ·w ≤ ‖v‖‖w‖.

This finishes the proof.

6. (Bonus Question) Show that the topology on X × Y determined by the metric D given
in Question #5 is exactly the product topology on X × Y .

Solution: We make the following observations.

(1) The family of metric balls {Br(x) | ∀x ∈ X, r > 0} is a basis for the topology of
(X, dX).

(2) The family of metric balls {Bs(y) | ∀y ∈ Y, s > 0} is a basis for the topology of
(Y, dY ).

(3) The family of metric balls β = {Bt((x, y)) | ∀(x, y) ∈ X × Y, t > 0} is a basis for
the topology of (X × Y,D).

(4) The family α = {Br(x)×Bs(y) | ∀(x, y) ∈ X × Y, r > 0 and s > 0} is a basis for
the product topology on X × Y .

To prove the statement, it suffices to show that every member of β is a union of
members of α and every member of α is a union of members of β.

Given a member Bt((x, y)) of β, let (a, b) be any point in Bt((x, y)). We want to
show that there exist r > 0 and s > 0 such that Br(a) × Bs(b) ⊆ Bt((x, y)). Since
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(a, b) ∈ Bt((x, y)), we have

D((a, b), (x, y)) =
√
dX(a, x)2 + dY (b, y)2 < t.

In particular, there exists ε > 0 such that√
dX(a, x)2 + dY (b, y)2 = t− ε.

Let r = s = ε/2. Then for any (w, z) ∈ Br(a)×Bs(b), we have

dX(a, w) < ε/2 and dY (b, z) < ε/2.

which implies that

D((w, z), (a, b)) =
√
dX(w, a)2 + dY (z, b)2 <

√
2

2
ε < ε

It follows that

D((w, z), (x, y)) ≤ D((w, z), (a, b)) +D((a, b), (x, y))

< ε+ t− ε
= t

Therefore, Bε/2(a)×Bε/2(b) ⊆ Bt((x, y)). So we have shown that Bt((x, y)) is a union
of members of α.

The proof for showing that every member of α is a union of members of β is similar.
I will omit this part of the proof.
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