Math 436 (Spring 2020) - Homework 5

1. Chapter 3: 25

Solution: First, we show that the diagonal map $\Delta: X \rightarrow X \times X$ is continuous. Let p_{1} and p_{2} be the projection of $X \times X$ to the first and second copy of X respectively. Clearly, $p_{1} \circ \Delta$ and $p_{2} \circ \Delta$ are continuous. It follows from Theorem 3.13 that Δ is continuous.

For the second part, we have

X is Hausdorff
\Longleftrightarrow
\Longleftrightarrowfor any $x \neq y \in X$, there exist open neighborhoods U_{x} of x and U_{y} of y in X such that $U_{x} \cap U_{y}=\emptyset$.
for any $(x, y) \notin \Delta(X)$, there exists an open neighbor- hood $U_{x} \times U_{y}$ of (x, y) in $X \times X$ such that $\left(U_{x} \times U_{y}\right) \cap \Delta(X)=\emptyset$.
$\Longleftrightarrow \Delta(X)$ is closed in $X \times X$.

2. Let $X \times Y$ be the product space of topological spaces X and Y. If $A \subseteq X$ and $B \subseteq Y$, prove that
(a) $\overline{A \times B}=\bar{A} \times \bar{B}$;
(b) $(A \times B)^{\circ}=\AA \times \stackrel{\circ}{B}$.

Solution:

(a) Since $\bar{A} \times \bar{B}$ is closed in $X \times Y$ and $A \times B \subseteq \bar{A} \times \bar{B}$, we have

$$
\overline{A \times B} \subseteq \bar{A} \times \bar{B}
$$

On the other hand, if $x \in \bar{A}$ and $y \in \bar{B}$, then any open neighborhood U of x in X intersects A nonempty, i.e., $U \cap A \neq \emptyset$ and any open neighborhood V of y in Y intersects B nonempty, i.e., $V \cap B \neq \emptyset$. Note that any open neighborhood W of (x, y) in $X \times Y$ contains an open neighborhood of (x, y) of the form $U \times V$ where U is an open neighborhood of x in X and V is an open neighborhood of y in Y. Hence $W \cap(A \times B) \neq \emptyset$. This shows that $(x, y) \in \overline{A \times B}$.
(b) Omitted.
3. If X and Y are discrete spaces, then the product space $X \times Y$ is discrete.

Solution: A discrete space is a topological space where every single point is open subset. Let (x, y) be a point in $X \times Y .\{x\}$ is open in X and $\{y\}$ is open in Y, since X and Y are discrete spaces. It follows that $\{(x, y)\}=\{x\} \times\{y\}$ is open in $X \times Y$. This shows that $X \times Y$ is discrete.
4. If X and Y are indiscrete spaces, then the product space $X \times Y$ is indiscrete.

Solution: The only open subsets of an indiscrete space are \emptyset and the whole space. It follows that the only open subsets of the product topology on $X \times Y$ are $\emptyset \times \emptyset=\emptyset$, $\emptyset \times Y=\emptyset, X \times \emptyset=\emptyset$ and $X \times Y$. This shows that $X \times Y$ is indiscrete.
5. Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be two metric spaces. Consider the formula

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right):=\sqrt{d_{X}\left(x_{1}, x_{2}\right)^{2}+d_{Y}\left(y_{1}, y_{2}\right)^{2}}
$$

for all $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in $X \times Y$. Prove that D defines a metric on the set $X \times Y$.

Solution:

(1) Clearly, $D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq 0$ and

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=0 \Longleftrightarrow\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) .
$$

(2) Also, it is obvious that

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=D\left(\left(x_{2}, y_{2}\right),\left(x_{1}, y_{1}\right)\right) .
$$

(3) Now we want to show that

$$
D\left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right) \leq D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)+D\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right) .
$$

Since d_{X} and d_{Y} are metrics on X and Y respectively, we have

$$
d_{X}\left(x_{1}, x_{3}\right) \leq d_{X}\left(x_{1}, x_{2}\right)+d_{X}\left(x_{2}, x_{3}\right)
$$

and

$$
d_{Y}\left(y_{1}, y_{3}\right) \leq d_{Y}\left(y_{1}, y_{2}\right)+d_{Y}\left(y_{2}, y_{3}\right) .
$$

By squaring both sides, we have

$$
\begin{gathered}
d_{X}\left(x_{1}, x_{3}\right)^{2} \leq d_{X}\left(x_{1}, x_{2}\right)^{2}+2 d_{X}\left(x_{1}, x_{2}\right) d_{X}\left(x_{2}, x_{3}\right)+d_{X}\left(x_{2}, x_{3}\right)^{2} \\
d_{Y}\left(y_{1}, y_{3}\right)^{2} \leq d_{Y}\left(y_{1}, y_{2}\right)^{2}+2 d_{Y}\left(y_{1}, y_{2}\right) d_{Y}\left(y_{2}, y_{3}\right)+d_{Y}\left(y_{2}, y_{3}\right)^{2} .
\end{gathered}
$$

It follows that

$$
\begin{aligned}
D & \left(\left(x_{1}, y_{1}\right),\left(x_{3}, y_{3}\right)\right)^{2} \\
= & d_{X}\left(x_{1}, x_{3}\right)^{2}+d_{Y}\left(y_{1}, y_{3}\right)^{2} \\
\leq & d_{X}\left(x_{1}, x_{2}\right)^{2}+2 d_{X}\left(x_{1}, x_{2}\right) d_{X}\left(x_{2}, x_{3}\right)+d_{X}\left(x_{2}, x_{3}\right)^{2} \\
& +d_{Y}\left(y_{1}, y_{2}\right)^{2}+2 d_{Y}\left(y_{1}, y_{2}\right) d_{Y}\left(y_{2}, y_{3}\right)+d_{Y}\left(y_{2}, y_{3}\right)^{2} \\
\leq & d_{X}\left(x_{1}, x_{2}\right)^{2}+d_{Y}\left(y_{1}, y_{2}\right)^{2} \\
& +2 \cdot \sqrt{d_{X}\left(x_{1}, x_{2}\right)^{2}+d_{Y}\left(y_{1}, y_{2}\right)^{2}} \cdot \sqrt{d_{X}\left(x_{2}, x_{3}\right)^{2}+d_{Y}\left(y_{2}, y_{3}\right)^{2}} \\
& +d_{X}\left(x_{2}, x_{3}\right)^{2}+d_{Y}\left(y_{2}, y_{3}\right)^{2} \\
= & \left(D\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)+D\left(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\right)\right)^{2}
\end{aligned}
$$

where we have used Cauchy-Schwartz inequality

$$
\begin{aligned}
& d_{X}\left(x_{1}, x_{2}\right) d_{X}\left(x_{2}, x_{3}\right)+d_{Y}\left(y_{1}, y_{2}\right) d_{Y}\left(y_{2}, y_{3}\right) \\
& \leq \sqrt{d_{X}\left(x_{1}, x_{2}\right)^{2}+d_{Y}\left(y_{1}, y_{2}\right)^{2}} \sqrt{d_{X}\left(x_{2}, x_{3}\right)^{2}+d_{Y}\left(y_{2}, y_{3}\right)^{2}} .
\end{aligned}
$$

Recall that for vectors $\mathbf{v}=\left(d_{X}\left(x_{1}, x_{2}\right), d_{Y}\left(y_{1}, y_{2}\right)\right)$ and $\mathbf{w}=\left(d_{Y}\left(y_{1}, y_{2}\right), d_{Y}\left(y_{2}, y_{3}\right)\right)$ in \mathbb{R}^{2}, we have

$$
\mathbf{v} \cdot \mathbf{w} \leq\|\mathbf{v}\|\|\mathbf{w}\| .
$$

This finishes the proof.
6. (Bonus Question) Show that the topology on $X \times Y$ determined by the metric D given in Question $\# 5$ is exactly the product topology on $X \times Y$.

Solution: We make the following observations.
(1) The family of metric balls $\left\{B_{r}(x) \mid \forall x \in X, r>0\right\}$ is a basis for the topology of $\left(X, d_{X}\right)$.
(2) The family of metric balls $\left\{B_{s}(y) \mid \forall y \in Y, s>0\right\}$ is a basis for the topology of $\left(Y, d_{Y}\right)$.
(3) The family of metric balls $\beta=\left\{B_{t}((x, y)) \mid \forall(x, y) \in X \times Y, t>0\right\}$ is a basis for the topology of $(X \times Y, D)$.
(4) The family $\alpha=\left\{B_{r}(x) \times B_{s}(y) \mid \forall(x, y) \in X \times Y, r>0\right.$ and $\left.s>0\right\}$ is a basis for the product topology on $X \times Y$.

To prove the statement, it suffices to show that every member of β is a union of members of α and every member of α is a union of members of β.
Given a member $B_{t}((x, y))$ of β, let (a, b) be any point in $B_{t}((x, y))$. We want to show that there exist $r>0$ and $s>0$ such that $B_{r}(a) \times B_{s}(b) \subseteq B_{t}((x, y))$. Since
$(a, b) \in B_{t}((x, y))$, we have

$$
D((a, b),(x, y))=\sqrt{d_{X}(a, x)^{2}+d_{Y}(b, y)^{2}}<t
$$

In particular, there exists $\varepsilon>0$ such that

$$
\sqrt{d_{X}(a, x)^{2}+d_{Y}(b, y)^{2}}=t-\varepsilon
$$

Let $r=s=\varepsilon / 2$. Then for any $(w, z) \in B_{r}(a) \times B_{s}(b)$, we have

$$
d_{X}(a, w)<\varepsilon / 2 \text { and } d_{Y}(b, z)<\varepsilon / 2 .
$$

which implies that

$$
D((w, z),(a, b))=\sqrt{d_{X}(w, a)^{2}+d_{Y}(z, b)^{2}}<\frac{\sqrt{2}}{2} \varepsilon<\varepsilon
$$

It follows that

$$
\begin{aligned}
D((w, z),(x, y)) & \leq D((w, z),(a, b))+D((a, b),(x, y)) \\
& <\varepsilon+t-\varepsilon \\
& =t
\end{aligned}
$$

Therefore, $B_{\varepsilon / 2}(a) \times B_{\varepsilon / 2}(b) \subseteq B_{t}((x, y))$. So we have shown that $B_{t}((x, y))$ is a union of members of α.
The proof for showing that every member of α is a union of members of β is similar. I will omit this part of the proof.

